FIBERGLASS CONDUIT SYSTEM FOR

UNDERWATER applications

FRE Composites' plants produce North America's highest quality fiberglass conduit products, ready for shipment worldwide. These plants house up-to-date automated filament winding equipment, and contains plenty of warehousing capacity, both indoors and outdoors.

IRST IN THE FIELD

OUR VISION

At FRE Composites, we have the experience, having manufactured our first fiberglass products as far back as 1958. Today, the company has skilled and experienced workforces operating two (2) plants and exporting product to numerous countries worldwide.

Currently, FRE Composites is focused exclusively on the design, engineering and production of composite filament-wound fiberglass conduit products and accessories. However, in addition to core products serving electric, telecom, water and wastewater utilities, and transportation industries, FRE Composites has engineered and produced highly specialized products for use in space exploration made from carbon fibers and other exotic materials, such as rocket launch tubes and the main structure of the CANADARM robotic arm, which is used by NASA's Space Shuttle to manipulate payloads in space. The CANADARM was also used to assist in the construction of the International Space Station, and in 2005, a CANADARM system attached to the International Space Station successfully assisted in the first in-orbit repair of the Space Shuttle Discovery.

Our 100,000 sq.ft. plant in Canada and our 50,000 sq. ft. plant in the United States have the capacity to accommodate high production requirements while maintaining substantial flexibility to foster to our growing customer base needs. Although we are the only source of FRE® trademarked conduit, it's no secret that we are not the only suppliers of fiberglass conduit in North America. Considering that you have choices, why should you do business with us?

EXPERIENCE COMPETENCE COMMITMENT

Quality

Our products are engineered to exacting standards, and are produced to consistent quality standards to provide superior life expectancy. Design performance and quality control always have been, and always will be, our number one priority.

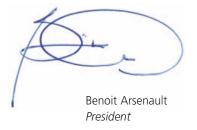
Experience

Our long experience has taught us how to design and to build our products right: First in the Field_®.

Production capacity

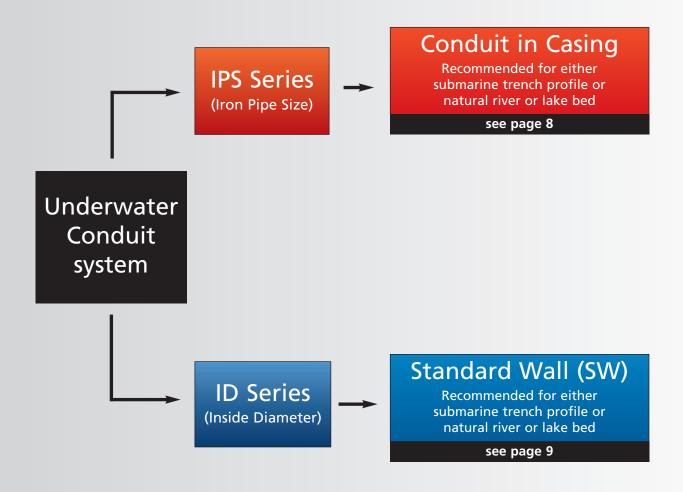
FRE Composites operates the largest production facility to produce fiberglass conduit in North America, which enables us to produce large volumes of product within tight delivery deadlines while being flexible to service ongoing requirements of numerous projects. We value distribution

Distribution


FRE Composites has always joined forces with distribution to promote its product lines. FRE® fiberglass conduit products are available in all popular sizes from stocking distributors from coast to coast in both Canada and the United States.

Service

We are organized to provide courteous and professional customer service in Chinese, English, French, Italian, Russian and Spanish. To better serve clients beyond continental North America, we are in the process of adding service capabilities in several additional languages.


We are eager to serve you professionally and courteously, supplying you with high quality conduit systems in accordance with your requirements.

No job is too small or too big.

Underwater FRE® Conduit System

Upon special request, FRE Composites products can be designed to meet specific requirements.

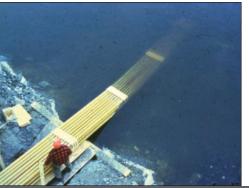


TABLE OF CONTENTS

President's Message	3
PRODUCT FEATURES	
Underwater FRE® Conduit System	4
Characteristics and applications	6-7
PRODUCT SPECIFICATIONS	
IPS Standard Wall (SW) Conduit System	8
ID Standard Wall (SW) Conduit System	9
Standard Wall (SW) Accessories	10
General Accessories	10-11
Product Test Data	12
Representative Performance Specs & Chemical Resistance	13
Wire Fill & Standard Conduit Packaging	14
Glossary	15

LIMITATION OF LIABILITY

Due to the varied nature of electrical system designs, field conditions and installation techniques and practices under which Underwater FRE® Conduit may be used, no guaranty or promise can be made regarding its performance in individual applications, since these factors are beyond the control of FRE Composites (2005) Inc. ("FRE Inc."). Therefore FRE Inc. or any of its affiliates and associates, accepts no responsibility for the performance of installed Underwater FRE® Conduit systems.

At the written request of the engineer, architect, designer or contractor responsible for the design, installation practices or supervision, FRE Inc. may provide assistance or on-site advice based on past experience but only as a guide for successful installation. However said engineer, architect, designer and contractor shall remain solely responsible for ensuring the design, installation practices and supervision are adequate for the intended application. FRE Inc. shall not be liable in any way towards anyone by reason of such assistance or on-site advice.

In all cases, FRE Inc.'s only liability will be the replacement of conduit or fittings shown to be defective in workmanship or materials prior to installation. Under no circumstances shall FRE Inc. be liable for any claims, damages, losses (including a loss of opportunity, business or profit) or costs whether based on the fault or negligence (whether gross or not) of FRE Inc., on contractual, legal or statutory warranties, strict liability or otherwise except as expressly provided herein.

Underwater FRE® Conduit is primarily designed for use in underwater environments. Should prolonged exposure be desired, please contact us for details on special protection techniques.

FRE Inc. has prepared this data as a guide only. Although FRE Inc. believes the information contained herein is accurate and reliable, this information shall not be construed as representation, warranty or guarantee, whether express or implied. FRE Inc. reserves the right to update products and /or data as necessary without notice.

Why should you consider using Underwater FRE® conduit?

Underwater FRE® conduit offers many advantages over expensive aerial and submarine ducts, as listed below:

EASE OF ASSEMBLY:

Underwater FRE® fiberglass conduit is easy to install, partly resulting from its light weight, which facilitates handling. Fitting sections together using the push-fit spigot and bell design further facilitates assembly. Underwater FRE® conduit is joined through the application of splice kit.

SAFE & SHORT PULL TIME:

With the use of BullNose Pulling eyes Underwater FRE® conduit secure joint couplings permit continuous lengths of Underwater FRE® conduit to be pulled at one time, eliminating expensive and time consuming coffer dams. In fact, Hydro-Quebec — one of the world's largest hydro power utilities is absolutely convinced about the outstanding performance of Underwater FRE® conduit. In severe winter conditions, they pulled assembled FRE® in an 8 conduit bank, underwater 1 024 ft or 312m in just 45 minutes.

ENVIRONMENTALLY-FRIENDLY:

Made in inert thermosetted resin, Underwater FRE® conduit crossings don't detract from the natural beauty of marine areas. While protecting your cables and unlike expensive aerial systems, Underwater FRE® isn't damaged by freezing, rain, ice and wind.

CORROSION RESISTANT:

Underwater FRE® conduit is not affected by the effects of water, salt water or most other chemicals. Contact the factory for further information, if specific information is required.

FLEXIBLE AND IMPACT RESISTANT:

The flexibility of Underwater FRE® conduit allows it to conform to trench floors and can accomodate irregular trench on natural lake or river bed profiles.

LOW COEFFICIENT OF FRICTION:

The coefficient of friction of Underwater FRE® conduit is lower than that of steel. This means that electrical cables are easier to pull through, resulting in labour savings and less stress on cables.

CABLE FUSION:

Fiberglass is an excellent insulator. Unlike fiberglass conduit, steel conduit will weld with cable may fuse or melt under electrical fault conditions.

NO BURN-THROUGH:

Underwater FRE® fiberglass conduit offers strong resistance to being cavitated or pierced as a result of rope pull.

a complete system

Why should you specify Underwater FRE® conduit made by FRE Composites?

There are a number of reasons why Underwater FRE® conduit offers the industry the most for its money. Underwater FRE® conduit system is not just a translucent epoxy conduit, but rather it is a specially formulated resin system which offers high mechanical strength and enough flexibility for ease of installation on irregular trench or lake/river bed profiles. Our **experience** and **quality record** speak for themselves. We live and breathe quality: quality is the number one priority to which everything else is subordinate. After nearly fifty years in the business, we know how to do things right, and we know how to ensure that we keep doing them right.

Our **total production capacity** is the largest in the industry enabling us to produce large volumes of product within tight delivery deadlines, and product is available from **stocking distributors** throughout Canada, the United States and elsewhere around the world.

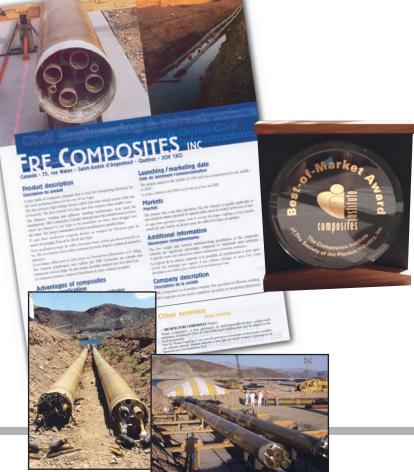
TO ENSURE THAT YOUR PROJECT WILL BENEFIT FROM THE HIGHEST QUALITY CONDUIT PRODUCTS, SPECIFY UNDERWATER FRE® CONDUIT:

KEY SPECIFICATION POINTS:

- Shall be manufactured from E or E-CR glass and specially formulated epoxy resin (no fillers).
- Shall have a glass content of 68%, plus or minus 3%.
- Shall be able to demonstrate several successful past installations as reference.
- Union made.
- Multiple locations to better serve your needs.

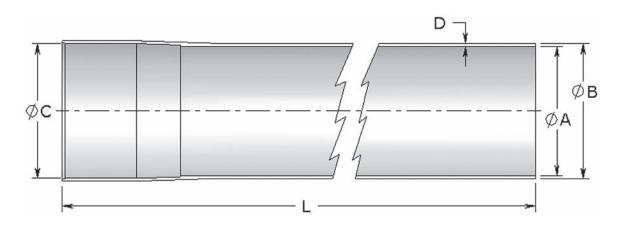
For more information, please contact us 1 888 849-9909

low cost


IPS STANDARD WALL (SW) CONDUIT IN CASING SYSTEM

IPS STANDARD WALL (SW) IN CASING

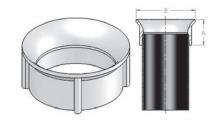
When dredging or trenching is not a viable option and your project requires added mechanical duct bank protection, FRE Composites offers a custom design Underwater FRE® conduit in casing system to conform to irregular trench floors or natural lake or river bed. Such system can either be assembled in factory or at the job site. Your right choice for best value.



ID STANDARD WALL (SW) CONDUIT SYSTEM

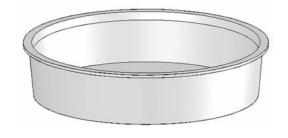
ID STANDARD WALL (SW) CONDUIT

S	ize	Symbol	ØA	ØB	ØC	D	L	ØA	ØB	ØС	D	L
in	mm	No.			inches				r	illimeters		meters
3½	91	60-3500	3.500	3.640	3.670	0.070	236.25	88.9	92.5	93.2	1.8	6
4	103	60-4000	4.000	4.140	4.170	0.070	236.25	101.6	105.2	105.9	1.8	6
4½	116	60-4500	4.500	4.690	4.730	0.095	236.25	114.3	119.1	120.1	2.4	6
5	129	60-5000	5.000	5.190	5.230	0.095	236.25	127.0	131.8	132.8	2.4	6
6	155	60-6000	6.000	6.190	6.230	0.095	236.25	152.4	157.2	158.2	2.4	6


- All our Underwater FRE® products are offered with a push-fit assembly requiring splice.
- Standard length is 19.68 ft. (6m), but can also be available in 39 ft. section (12m), if required.
- Spigot end tapered for ease of installation

STANDARD WALL (SW) ACCESSORIES

ID SW RADIUS BELL END


S	ize	Symbol ØA		ØB	ØA	ØB
in	mm	No.	ine	inches		eters
3½	91	40-3518	1.7	4.5	43.2	114.3
4	103	40-4018	2.2	5.0	55.9	127.0
4½	116	40-4518	2.2	5.5	55.9	139.7
5	129	40-5018	2.2	6.0	55.9	152.4
6	155	40-6018	2.4	7.0	61.0	177.8

GENERAL ACCESSORIES

ID THERMOPLASTIC CAPLUG

ze	Symbol	De	pth
mm	No.	in	mm
91	40-3528	1.0	25.4
103	40-4028	1.3	33.0
116	40-4528	1.0	25.4
129	40-5028	1.0	25.4
155	40-6028	1.5	38.1
	91 103 116 129	mm No. 91 40-3528 103 40-4028 116 40-4528 129 40-5028	mm No. in 91 40-3528 1.0 103 40-4028 1.3 116 40-4528 1.0 129 40-5028 1.0

SPLICE KIT

Size	Symbol No.
All	40-0174

JOINT CALCULATION TABLE (PER KIT)

ID BASE	D			
S	ize	Joints made	Pull-Out	Strength
in	mm	per kit	lbs	kg
3½	91	11	3 500	1 587
4	103	10	4 000	1 814
4½	116	8	4 500	2 041
5	129	7	5 000	2 268
6	155	6	6 000	2 722

PRODUCT TEST DATA

Underwater FRE® fiberglass conduit

MATERIAL	TEST RESULTS	TEST PROTOCOL
Resin Glass	Epoxy (no fillers) Fiberglass (E or E-CR Glass)	CSA.C.22.1.2420
PHYSICAL PROPERTIES	TEST RESULTS	TEST PROTOCOL
Glass Content Specific Gravity Barcol Hardness U.V. Resistance Water Absorption	68% ± 3% 1.94 g/cm³ 46 ± 2 > 3 500 Hrs (Xenon Arc) < 1%	API 15LR ASTM D792 ASTM D2583 CSA C22.2 No. 2515 ASTM D570
MECHANICAL DATA	TEST RESULTS	TEST PROTOCOL
Tensile Strength (axial) Elasticity Modulus (4")(103 mm) Adhesive Joint Pull-Out Load	≥ 7 000 Psi (48 Mpa) 1.3 E6 Psi (8 963 Mpa) 1 500 lbs (680 kg)	ASTM D638 ASTM D638 ASTM D638
SURFACE FINISH	TEST RESULTS	TEST PROTOCOL
Exterior (average) Interior (average) Color	<2 000 microinches (50.8 micrometers) <125 microinches (3.2 micrometers) Translucent (standard)	
THERMAL PROPERTIES	TEST RESULTS	TEST PROTOCOL
Coefficient of Thermal Expansion Thermal Conductivity Thermal Resistivity Flammability Heat Deflection Temperature (HDT)	1.37 E5 in./in./°F (2.47 E5 m./m./°C) 2 Btu.in/ft².h. °F (0.288W/ m.K) 0.5°F. ft².h/Btu.in (3.47 mK/W) Satisfactory 312°F (156°C)	ASTM D696 ASTM D335 ASTM D335 ASTM D648
ELECTRICAL DATA	TEST RESULTS	TEST PROTOCOL
Dielectric Strength Dielectric Breakdown Voltage Dissipation Factor	500 volts/mil (19.68 kV/mm) 29.7 kV 0.5%	ASTM D149 ASTM D149 ASTM D150
COEFFICIENT OF FRICTION	TEST RESULTS	TEST PROTOCOL
Cross Linked Polyethylene Cable PVC Jacketed Cable Concentric Neutral Cable Teck (Armored) Cable	0.233 ± .02 0.385 ± .06 0.160 ± .03 0.161 ± .03	CSA B196.1 CSA B196.1 CSA B196.1 CSA B196.1

REPRESENTATIVE PERFORMANCE SPECS

Si in	ze mm	Wal in	l mm	We lbs/ft.	eight Kg/m	Axial Strength (ASTM D2412)		l Load ailure	Safe pulling l at 3 500 P Stress Leve	si	Allowa Peak L during Du	oad
						Psi	lbs	Kg	lbs kg	ı	lbs	kg
ID S	TANDAR	D WALL (SW	()									
3½	91 102	.070 .070	1.8 1.8	.64 .73	.95 1.09	7 000 7 000	5 200 5 900	2 359 2 676	2 600 1 1 3 000 1 3		2 600 2 950	1 179 1 338
4 4½	116	.095	2.4	1.10	1.64	7 000	9 700	4 400	4 900 2 2	23	4 850	2 200
5 6	129 155	.095 .095	2.4 2.4	1.21 1.49	1.80 2.22	7 000 7 000	10 800 12 900	4 899 5 851	5 400 2 4 6 500 2 9		5 400 6 450	2 449 2 925
Siz	e mm	Compressive Modulus (E)	Load @ 5% Deflection		ss Level Deflection	Load at Failure	Duct Stiffness	Stiffness Factor	Imp Resist		Ra	Bending Idius
		(Psi x 10°)	Psi		Psi	lbs kg			lbs ft.	kg m	ft.	m
ID S	TANDAR	D WALL (SW	()									
3½ 4 4½ 5	91 103 116 129	2.71 2.23 2.30 2.34	150 95 235 195	7	800 100 300 600	2 000 907 1 400 635 3 300 1 497 2 700 1 225	77 43 94 70	65 53 169 173	90 95 160 170	12.4 13.1 22.1 23.5	65 73	17.4 19.8 22.3 24.7
6	129 155	2.34	170		900	2 100 1 223	70 51	215	380	52.6		29.6

FLEXURAL DATA

Flexural Modulus:	1.3E6 Psi	8 963 Mpa
Allowable working stress at 0,2% strain:	2 400 Psi	16,55 Mpa
Long term flexural modulus at 0,2% strain:	0.84E6 Psi	5 792 Mpa
Long term allowable design stress:	1 680 Psi	11,58 Mpa

CHEMICAL RESISTANCE

	after	after		after	after
	45 days	90 days		45 days	90 days
Sodium chloride, 10% aq. sin.	Е	E	Nitric acid, 10% aq. sin.	Е	Е
Diesel fuel	E	E	Sodium carbonate, 10% aq. sin.	Е	E
Unleaded gasoline	E	E	Benzene	NR	NR
Jet fuel	E	E	Toluene	Е	E
Hydrochloric acid, 10% aq. sin.	E	E	Xylene	Ε	Ε
Sulfuric acid, 10% aq. sin.	Е	E	Acetone	NR	NR

E: excellent chemical resistance

NR: not recommended for long term contact.

lote: Chemical resistance tests reported here were conducted according to UL-651 section 38. Samples were immersed in the specified chemical reagent for 45 and 90 days, respectively. Weight gains or weight losses at the end of the immersion period were recorded. Mechanical integrity was determined by the parallel plate crush (ASTM D2412) test. Loads were measured at 5% deflection and at failure at the end of the immersion period and compared to the reference values of control specimens not exposed to any chemical attack. Weight gains or losses above 2% and drops in crushing resistance (load at 5% deflection or load at failure) above 15% were considered as evidence of insufficient chemical resistance.

WIRE FILL

Maximum allowable percentage wire fill from 2008 National Electrical Code (NEC) and 2012 Canadian Electrical Code (CEC).

ID SIZES

	IMPERIAL									
Trade size	Inside Diameter	Total Area 100% (in²)	Percent of c	OF CONDUC ross section or conductors	of conduit					
ID ID	(in)		1 53% fill (in²)	2 31% fill (in²)	Over 2 40% fill (in²)					
3½	3.500	9.621	5.099	2.983	3.848					
4	4.000	12.566	6.660	3.896	5.027					
4½	4.500	15.904	8.429	4.930	6.362					
5	5.000	19.635	10.407	6.087	7.854					
6	6.000	28.274	14.985	8.765	11.310					

	METRIC										
Trade	Inside	Total Area	Percent of c	OF CONDUC ross section r conductors	of conduit						
ID	size Diameter ID (mm)		1 53% fill (mm²)	2 31% fill (mm²)	Over 2 40% fill (mm²)						
89	91	6 207	3 290	1 924	2 483						
102	103	8 107	4 297	2 513	3 243						
114	116	10 261	5 438	3 181	4 104						
127	129	12 668	6 714	3 927	5 067						
152	155	18 242	9 668	5 655	7 297						

STANDARD CONDUIT PACKAGING

Size		ARD WALL (S		Weight per Stick		Weight		Sticks per Crate	Footage per Crate		Crate per Truck	Footage per Truck		Weight per Truck		Width per Crate		Height per Crate	
3126		Lengui		per stick		per Crate		per Crate											
in	mm	ft	meter	lb	kg	lb	kg		ft	meter		ft	meter	lb	kg	in	mm	in	mm
31/2	91	39.0	11.9	24.96	11.32	1 847	838	74	2 886	880	8	23 088	7039	14 776	5 483	45	1 143	24	610
4	103	39.0	11.9	28.47	12.91	1 623	736	57	2 223	678	8	17 784	5422	12 984	5 889	45	1 143	24	610
41/2	116	39.0	11.9	42.90	19.46	1 845	837	43	1 677	511	8	13 416	4090	14 760	6 695	45	1 143	24	610
5	129	39.0	11.9	47.19	21.41	1 793	813	38	1 482	452	8	11 856	3615	14 344	6 506	45	1 143	24	610
6	155	39.0	11.9	58.11	26.36	1 511	685	26	1 014	309	8	8 112	2473	12 088	5 483	45	1 143	24	610

GLOSSARY

Underwater FRE® Conduit

Underwater FRE® conduit manufactured by FRE Composites. Underwater FRE® is a trademark in Canada, United States and elsewhere in the world, and is a recognized name worldwide since 1970's for superior quality advanced composite products.

IPS (Iron Pipe Size)

Dimensional standard widely utilized in North America for both metallic (such as RMC, EMT, IMC) and Rigid Non metallic (RTRC, PVC and HDPE) electrical conduit. This trade size has established its Outside Diameter as the constant value.

ID (Inside Diameter)

Dimensional standard widely utilized in North America for electrical and telecommunication raceways. This trade size has established its Inside Diameter as the constant value.

Standard Wall (SW) conduit for Below Ground (BG) typical Direct Burial (DB) or Encased Burial (EB) installations or for typical Above Ground (AG) exposed applications

Conduit built with a standard nominal wall thickness that varies based on the conduit diameter.

RTRC (Reinforced Thermosetting Resin Conduit)

An industry acronym for conduits that are manufactured using a mineral reinforcement such as fiberglass in a fully cured thermoset resin.

Specification Grade

IPS or ID conduit system products manufactured to FRE Composites' own specification.

Conduit

Straight section available in 9.84 ft (3 m) or 19.68 ft (6 m) length, and in standard diameters from %" to 8" (21 to 203 mm).e gasket with a triple indentation.

Key Technical Descriptions

Glass content

Weight percent of glass fiber present in the conduit, as % of total weight.

Span distance

Distance between conduit supports which varies based on the selected cable weight and conduit trade size.

Deflection

Deformation of conduit due to the weight of the cable installed inside it. Deflection is a function of the diameter and weight of the cables, and of the distance between conduit supports. Measured in inches.

Coefficient of thermal expansion

Ratio representing the change in linear dimension of a section of conduit resulting from changes in temperature (delta T°).

Coefficient of friction

Ratio of the force tending to maintain contact between two surfaces and the force which opposes the sliding of the surfaces one along the other.

75 WALES STREET ST-ANDRE-D'ARGENTEUIL (QUEBEC) CANADA JOV 1X0 TELEPHONE: +1 450 537-3311

FAX: +1 450 537-3415 TOLL FREE: 888 849-9909

WWW.FRECOMPOSITES.COM

60 GREENHORN DRIVE PUEBLO CO 81004 TELEPHONE: +719-565-3311 FAX: +719-564-3415 TOLL FREE: 888 849-9909